Skip to main content

Number System (No. of Zeros)

 How to Find Number of Trailing     Zeros in a Factorial or Product


Under the topic of Number of Zeros, it is expected to find out the number of trailing zeros at the end of the number. In simple words, it can be said that to calculate the No. of Zeros at the  right side of the number.

To make the things more clear, let us take a simple example to understand the concept of Number of Zeros

Example : 1234057000 → No. of Trailing zeros →  3

                 1050500000 → No. of Trailing zeros → 5

                 1.5 x 10⁵ → No. of Trailing zeros → 4

Such Zeros that are represented at the end of the numbers are actually the Trailing Zeros.


Now the next thing arises about the formation of Zeros in the Numbers.

So, the fundamental regarding the formation of a Zero is the presence of a Pair of 2 & 5.

         

No. of 2’s

No of 5’s

No. of Zeros

1

1

1

2

2

2

3

3

3

4

4

4


i.e. 10  → 2¹ x 5¹

     100 → 2² x 5²

     1000 → 2³ x 5³

     10000 → 2⁴ x 5⁴


KEY HIGHLIGHTS : 

  • Number of trailing zeroes is going to be the power of 2 or 5, whichever is lesser.

  • For a number to be divisible by 10, it should be divisible by 2 & 5.

Practice Material : 

Q 1 .Calculate Number of Zeros in 100!.

  1. 23

  2. 24

  3. 20

  4. 22

Sol : To calculate Number of Zeros in 100! , it is required to calculate Number of 2’s and Number of 5’s in 100!.

Calculating No. of 5’s 

100

━━ = 20

  5

  20

━━ = 4

   5

No. of 5’s in 100!  = 20 + 4 = 24


Now calculate No. of 2’s

100 

━━  = 50

  2

 50 

━━ = 25

  2

 25

━━ = 12

  2

 12

━━ = 6

  2

  6

━━ = 3

  2

  3

━━ = 1

  2

Number of 2’s in 100! = 50 + 25 + 12 + 6 + 3 + 1 =  97

{ Number of trailing zeroes is going to be the power of 2 or 5, whichever is lesser. }

Now the Number of Zeros is the Number of Pairs of 2’s and 5’s  form  = 24


Q 2. Which of the following has 23 trailing zeros ?

  1. 99!

  2. 95!

  3. No such factorial exist

  4. None of these

Sol : No such factorial exist with 23 Trailing Zeros. Because upto 99! there are 22 Trailing Zeros. 

No. of Trailing Zeros in 100 ! = 24 Zeros

No. of Trailing Zeros in 951 to 99! = 22 Zeros

At 100! , 2 Zeros add to these 22 zeros; making 24 Zeros in 100 Factorial.

There is no valid value for which there are 23 trailing zeros. 


Q 3. What is the number of trailing in 125000 ?

  1. 3

  2. 4

  3. 7

  4. 6

Sol : Prime Factorization of 125000 = 2³  x 5⁶

        Since, Number of trailing zeroes is going to be the power of 2 or 5, whichever is       lesser.

Hence,  the number of trailing in 125000 is 3


Q 4. Find the number of trailing zeros in

        1¹ x 2² x  3³ x 4⁴ x ……………………...100¹⁰⁰ . 

  1. 1300

  2. 1305

  3. 1050

  4. 1500

Sol : Since , the number of trailing zeros depends upon the number of 2’s and 5’s.

         We can clearly say the power of 5 is the limiting factor in the expression.

         1¹,  2² , 3³, 4⁴  and so on are such numbers which have no 5’s

         Number of 5’s lies only in the multiple of 5.

        5⁵ → No of 5’s → 5

      10¹⁰ → No of 5’s → 10   (2 x 5)

      15¹⁵ → No of 5’s → 15   (3 x 5)

      20²⁰ → No of 5’s → 20   (4 x 5)

      25²⁵ → No of 5’s → 50    (5 x 5)

      30³⁰ → No of 5’s → 30    (5 x 6)

      35³⁵ → No of 5’s → 35    (5 x 7)

      40⁴⁰ → No of 5’s → 40    (5 x 8)

      45⁴⁵ → No of 5’s → 45    (5 x 9)

      50⁵⁰ → No of 5’s → 100    (2 x 5 x 5)

      55⁵⁵ → No of 5’s → 55    (5 x 11)

      60⁶⁰ → No of 5’s → 60    (5 x 12)

      65⁶⁵ → No of 5’s → 65    (5 x 13)

      70⁷⁰ → No of 5’s → 70    (5 x 14)

      75⁷⁵ → No of 5’s → 150    (3 x 5 x 5)

      80⁸⁰ → No of 5’s → 80    (5 x 16)

      85⁸⁵ → No of 5’s → 85    (5 x 17)

      90⁹⁰ → No of 5’s → 90    (5 x 18)

      95⁹⁵ → No of 5’s → 95    (5 x 19)

     100¹⁰⁰ → No of 5’s → 200   (2 x 2 x 5 x 5)

      No. of 5’s = 5 + 10 + 15 + 20 + 50 + 30 + 35 + 40 + 45 + 100 + 55 + 60 + 65 + 70 + 150 + 80 + 85 + 90 + 95 + 200 = 1300

      No. of Trailing Zeros = 1300


Q 5. What is the number of trailing zeros in 1123! ?

  1. 224

  2. 250

  3. 277

  4. 296

Sol : Power of 5 is the limiting factor in the expression

Calculating No. of 5’s 

1123

━━ = 224

  5

  224

━━ = 44

   5

 44

━━ = 8

  5

  8

━━ = 1

  5

No. of 5’s in 1123!  = 224 + 44 + 8 + 1

Hence , the number of trailing zeros in 1123!  = 224 + 44 + 8 + 1 = 277

Comments

Post a Comment

Popular posts from this blog

Number System (IDENTITIES)

IDENTITIES Basic Formulas : (a + b)² = a² + b² + 2 ab (a - b)² = a² + b² - 2 ab (a + b)² + (a - b)² = 2 ( a² + b² ) (a + b)² - (a - b)² = 4 ab a² - b² = (a + b) (a - b) (a + b + c)² = a² + b² + c² + 2 ( ab + bc + ca) (a + b)³ = a³ + b³ + 3ab (a + b) = a³ + b³ + 3a²b + 3ab² (a - b)³ = a³ - b³ - 3ab (a - b) = a³ - b³ - 3a²b + 3ab² a³ + b³ = ( a + b ) ( a² + b² - ab ) a³ - b³ = ( a - b ) ( a² + b² + ab ) (a³ + b³+ c³ - 3 abc)  = (a + b+ c) (a² + b² + c² - ab - bc - ca) In the above identity ; CASE 1 :  if (a + b+ c) = 0  (a³ + b³+ c³ - 3 abc)  = 0 Hence, a³ + b³+ c³ = 3abc CASE 2 : (a³ + b³+ c³ - 3 abc)  = ½ { 2(a + b+ c) (a² + b² + c² - ab - bc - ca)}  Or,  (a³ + b³+ c³ - 3 abc) = ½ {(a + b+ c) (2a² + 2b² + 2c² - 2ab - 2bc - 2ca) Or,  (a³ + b³+ c³ - 3 abc) = ½ {(a + b+ c) ( a - b )² ( b - c )² ( c - a )² } Division Algorithm :  When a number is divisible by another number then;            ...

H.C.F. & L.C.M. (Solved Problems)

Practice material Q1. Find the L.C.M. of 16, 24, 36 and 54. 448 432 480 464 Sol : Using Prime Factorization Method  16 = 2⁴ 24 = 2³ x 3¹ 36 = 2² x 3² 54 = 2¹ x 3³ L.C.M. of 16, 24, 36 and 54 = 2⁴ x 3³ = 432                                                              2      8     16             10 Q 2. Find the H.C.F. and L.C.M. of   ── , ── , ── , and  ─── .                                              ...