Skip to main content

CLOCKS (ERROR)


CLOCK (ERROR)

TYPE 1: When the Minute Hand overtakes the Hour Hand either fast or slow.

Example : If in a clock the minute hand overtakes the hour hand in 65 minutes of correct time then how much does the clock gain or loss in a day ?

a. 24/23 fast

b. 24/123 slow

c. 24/ 23 slow

d. 24/ 123 fast

Sol :                                5

           After every  65  ━━ minutes , Minute Hand overtakes the Hour Hand.

                                       11

According to question, the Minute Hand overtakes hour Hand in 65 minutes. The Clock is faster than the usual.

    We know that , 

                                     5

                              65  ━    ─ Given Time 

                                    11

                             ━━━━━━━━━━━ x Total Time

                                      Given Time

                                     5

                              65  ━    ─ 65

                                    11

                       =  ━━━━━━━━━━━ x 24 hours 

                                            65

                           

                                  5

                       =  ━━━━━ x 24 hours 

                              11 x 65

                               24

                       =   ━━━ hrs fast.

                              143


Example : If in a clock the minute hand overtakes the Hour hand in 60 minutes of correct time then how much does the clock gain or loss in 22 hours?

  1. 2 minutes

  2. 20 minutes

  3. 120 minutes

  4. 1200 minutes

Sol :  According to question, the Minute Hand overtakes hour Hand in 60 minutes. The Clock is faster than the usual.            

    We know that , 

                                     5

                              65  ━    ─ Given Time 

                                    11

                            ━━━━━━━━━━━ x Total Time

                                      Given Time

                                     5

                              65  ━    ─    60

                                    11

                       =  ━━━━━━━━━━━ x 22 hours 

                                            60

                                       5

                                  5 ━─

                                      11

                       =  ━━━━━ x 22 hours 

                                  60

                                60

                       =   ━━━━  x 22 hours

                              60 x 11

                      = 2 hours = 120 minutes Faster


Example : If in a clock the minute hand overtakes the hour hand in 70 minutes of correct time then how much does the clock gain or loss in 77 hours?

  1. 5 Hours Slow

  2. 5 Hours Fast

  3. 6 Hours Slow

  4. 6 Hours Fast

Sol : According to question, the Minute Hand overtakes hour Hand in 70 minutes. The Clock is slower than the usual.

We know that , 

                                     5

                              65  ━    ─ Given Time 

                                    11

                            ━━━━━━━━━━━ x Total Time

                                      Given Time

                                    5

                              65  ━    ─    70

                                    11

                       =  ━━━━━━━━━ x 77 hours 

                                            70

                                       6

                                  4 ━─

                                      11

                       =     ━━━━━ x 77 hours 

                                     70

                                50

                       =   ━━━━  x 77  hours

                              70 x 11

                      = 5 hours Slower


Type 2 : When clock is faster or slower by some minutes

Example : A clock which gains uniformly is 5 minutes slow on Sunday 5 PM if it is 7 minutes fast on Tuesday 5 PM then when was it correct ?

  1. Monday  8 AM

  2. Tuesday 8 AM

  3. Monday 1 PM

  4. Tuesday 1 PM

Sol : On Sunday 5 PM  → 5 Minutes Slow

         On Tuesday 5 PM → 7 Minutes Faster

        We know that 

                                 Slow /Fast time

                              ━━━━━━━━━ x Total Time 

                                Slow + Fast Time 

                       5

               =  ━━━ x 48 Hours                          [Sunday 5 PM to Tuesday 5 PM = 48 Hours]

                      12

               = 5 x 4 

               = 20 Hours.

           After 20 hours of Sunday 5 PM, Clock depicts Correct Time.

           Hence,   Sunday 5 PM + 20 Hours = Monday 1 PM


Example : A clock which gains uniformly is 8 minutes slow on Sunday 5 PM if it is 10 minutes fast on Wednesday  5 PM then when was it correct ?

  1. Monday  8 AM

  2. Tuesday 8 AM

  3. Monday 1 PM

  4. Tuesday 1 PM

Sol : On Sunday 5 PM  → 8 Minutes Slow

         On Wednesday 5 PM → 10 Minutes Faster

        We know that 

                                 Slow /Fast time

                              ━━━━━━━━━ x Total Time 

                                Slow + Fast Time 

                       8

               =  ━━━ x 72 Hours                       [Sunday 5 PM to Wednesday 5 PM = 72 Hours]

                      18

               = 8 x 4 

               = 32 Hours.

           After 32 hours of Sunday 5 PM, Clock depicts Correct Time.

           Hence,   Sunday 5 PM + 32 Hours = Tuesday 1 AM


Example : A clock which loss uniformly is 5 minutes fast on Sunday 5 PM if it is 7 minutes slow on Tuesday  5 PM then when was it correct ?

Sol : On Sunday 5 PM  → 5 Minutes Fast

         On Tuesday 5 PM → 7 Minutes Slow

         We know that 

                                 Slow /Fast time

                              ━━━━━━━━━ x Total Time 

                                Slow + Fast Time 

                       5

               =  ━━━ x 48 Hours                       [Sunday 5 PM to Tuesday 5 PM = 48 Hours]

                      12

             = 5 x 4 Hours 

             = 20 hours

           After 20 hours of Sunday 5 PM, Clock depicts Correct Time.

           Hence,   Sunday 5 PM + 20 Hours = Monday 1 PM


Example : A clock which loss uniformly is 5 minutes fast on Sunday 5 PM if it is 7 minutes slow on Monday  6 PM then when was it correct ?

Sol : On Sunday 5 PM  → 5 Minutes Fast

         On Monday 6 PM → 7 Minutes Slow

         We know that 

                                 Slow /Fast time

                              ━━━━━━━━━ x Total Time 

                                Slow + Fast Time 

                       5

               =  ━━━ x 25 Hours                       [Sunday 5 PM to Monday 6 PM = 25 Hours]

                      12

                        5

             = 10 ━━━Hours 

                        12

                           5

            = 10 + ━━━ x 60 

                          12

            = 10 Hours  25 Minutes  

           After 10 Hours  25 Minutes of Sunday 5 PM, Clock depicts Correct Time.

           Hence,   Sunday 5 PM + 10 Hours  25 Minutes = Monday 3 : 25 AM


Example : A clock which loss uniformly is 9 minutes fast on Sunday 5 PM if it is 3 minutes slow on Wednesday  5 AM then when was it correct ?

Sol : On Sunday 5 PM  → 9 Minutes Fast

         On Wednesday 5 PM → 3 Minutes Slow

         We know that 

                                 Slow /Fast time

                              ━━━━━━━━━ x Total Time 

                                Slow + Fast Time 

                       9

               =  ━━━ x 60 Hours                       [Sunday 5 PM to Wednesday 5 PM = 60 Hours]

                      12

               =  9 x 5 Hours

               = 45 Hours       

           After 45 hours of Sunday 5 PM, Clock depicts Correct Time.

           Hence,   Sunday 5 PM + 45 Hours = Tuesday 2 PM        

   

TYPE 3:

Example : A clock which gains 1 hour in every 24 hours is set right on Sunday 6 PM then what will be the actual time when the clock indicates Tuesday 8 PM ?

Sol : 




Comments

Popular posts from this blog

Number System (No. of Zeros)

  How to Find Number of Trailing     Zeros in a Factorial or Product Under the topic of Number of Zeros , it is expected to find out the number of trailing zeros at the end of the number. In simple words, it can be said that to calculate the No. of Zeros at the  right side of the number. To make the things more clear, let us take a simple example to understand the concept of Number of Zeros Example : 1234057000 → No. of Trailing zeros →  3                  1050500000 → No. of Trailing zeros → 5                  1.5 x 10⁵ → No. of Trailing zeros → 4 Such Zeros that are represented at the end of the numbers are actually the Trailing Zeros. Now the next thing arises about the formation of Zeros in the Numbers. So, the fundamental regarding the formation of a Zero is the presence of a Pair of ...

Number System (IDENTITIES)

IDENTITIES Basic Formulas : (a + b)² = a² + b² + 2 ab (a - b)² = a² + b² - 2 ab (a + b)² + (a - b)² = 2 ( a² + b² ) (a + b)² - (a - b)² = 4 ab a² - b² = (a + b) (a - b) (a + b + c)² = a² + b² + c² + 2 ( ab + bc + ca) (a + b)³ = a³ + b³ + 3ab (a + b) = a³ + b³ + 3a²b + 3ab² (a - b)³ = a³ - b³ - 3ab (a - b) = a³ - b³ - 3a²b + 3ab² a³ + b³ = ( a + b ) ( a² + b² - ab ) a³ - b³ = ( a - b ) ( a² + b² + ab ) (a³ + b³+ c³ - 3 abc)  = (a + b+ c) (a² + b² + c² - ab - bc - ca) In the above identity ; CASE 1 :  if (a + b+ c) = 0  (a³ + b³+ c³ - 3 abc)  = 0 Hence, a³ + b³+ c³ = 3abc CASE 2 : (a³ + b³+ c³ - 3 abc)  = ½ { 2(a + b+ c) (a² + b² + c² - ab - bc - ca)}  Or,  (a³ + b³+ c³ - 3 abc) = ½ {(a + b+ c) (2a² + 2b² + 2c² - 2ab - 2bc - 2ca) Or,  (a³ + b³+ c³ - 3 abc) = ½ {(a + b+ c) ( a - b )² ( b - c )² ( c - a )² } Division Algorithm :  When a number is divisible by another number then;            ...

H.C.F. & L.C.M. (Solved Problems)

Practice material Q1. Find the L.C.M. of 16, 24, 36 and 54. 448 432 480 464 Sol : Using Prime Factorization Method  16 = 2⁴ 24 = 2³ x 3¹ 36 = 2² x 3² 54 = 2¹ x 3³ L.C.M. of 16, 24, 36 and 54 = 2⁴ x 3³ = 432                                                              2      8     16             10 Q 2. Find the H.C.F. and L.C.M. of   ── , ── , ── , and  ─── .                                              ...