24 → 2 + 4 → 6
21 → 2 + 1 → 3
9876 → 9 + 8 + 7 + 6 → 30 → 3 + 0 → 3
3452 → 3 + 4 + 5 + 2 → 14 → 1 + 4 → 5
Or, On Dividing the digits by 9, the obtained Remainder is Digital Sum Balance.
━━ = 3
9
24
━━━ = 6
9
3452
━━━━ = 5
9
KEY HIGHLIGHTS : The range of D.S. always falls from 0 to 9.
When we add 9 to a number, its Digital Sum will not change therefore in order to calculate Digital Sum we need to cancel out all the 9’s.
9 + 1 → 10 → 1
9 + 2 → 11 → 2
9 + 3 → 12 → 3
9 + 4 → 13 → 4
9 + 5 → 14 → 5
9 + 6 → 15 → 6
9 + 7 → 16 → 7
9 + 8 → 17 → 8
9 + 9 → 18 → 9
Example : 12345 → 6 → Digital Sum
49219 → 7 → Digital Sum
59991 → 6 → Digital Sum
637218 → 9 → Digital Sum
63271894503 → 3 → Digital Sum
When the Digital Sum on the Digits turns out to be 0, consider it to be 9 (During Addition and Subtraction). But this does not follow for multiplication.
Decimal and percentage do not have any impact on Digital Sum of a number.
Example : 14 → 5 → Digital Sum
1.4 → 5 → Digital Sum
140 → 5 → Digital Sum
1400 → 5 → Digital Sum
Example : 62% → 8 → Digital Sum
6.2 % → 8 → Digital Sum
620 % → 8 → Digital Sum
Properties of Digital Sum
D.S. (a + b) = D.S. {D.S.(a) + D.S.(b)}
D.S. (a - b) = D.S. {D.S.(a) - D.S.(b)}
D.S. (a x b) = D.S. {D.S.(a) x D.S.(b)}
Example of Property 1: D.S. (a + b) = D.S. {D.S.(a) + D.S.(b)}
786 + 152 = 938
↓ ↓ ↓
D.S. (21) + D.S.(8) = D.S. (11)
↓ ↓ ↓
3 + 8 = 2
11
↓
2 → Digital Sum
L.H.S. = R.H.S.
46 = 34 + 12
↓ ↓ ↓
D.S. (10) = D.S. (7 ) + D.S. (3)
↓ ↓ ↓
1 7 + 3 = 10
↓
Digital Sum ← 1
L.H.S. = R.H.S.
Example of Property 2: D.S. (a - b) = D.S. {D.S.(a) - D.S.(b)}
962 - 151 = 811
↓ ↓ ↓
D.S. (8) - D.S.(7) = D.S. (10)
↓ ↓ ↓
8 - 7 = 1
1 → Digital Sum
L.H.S. = R.H.S.
729 - 591 = 138
↓ ↓ ↓
D.S. (9) - D.S.(6) = D.S. (3)
↓ ↓ ↓
9 - 6 = 3
3 → Digital Sum
L.H.S. = R.H.S.
Example of Property 3: D.S. (a x b) = D.S. {D.S.(a) x D.S.(b)}
35 x 16 = 560
↓ ↓ ↓
D.S. (8) x D.S.(7) = D.S. (11)
↓ ↓ ↓
8 x 7 = 2
56 → 11
↓
2 → Digital Sum
L.H.S. = R.H.S.
54 x 76 = 4104
↓ ↓ ↓
D.S. (9) x D.S.(13) = D.S. (9)
↓ ↓ ↓
9 x 4 = 9
36 → 9
↓
9 → Digital Sum
L.H.S. = R.H.S.
Comments
Post a Comment