Skip to main content

Digital Sum Balance (D.S.)


A single digit is obtained by adding all the digits of a number is called Digital Sum Balance (D.S.)
 
Ex : 12 → 1 + 2 → 3

24 → 2 + 4 → 6

21 → 2 + 1  → 3

9876 → 9 + 8 + 7 + 6 → 30 → 3 + 0 → 3

3452 → 3 + 4 + 5 + 2 → 14 → 1 + 4 → 5

Or,  On Dividing the digits by 9, the obtained Remainder is Digital Sum Balance. 


Ex :    12
  •    ━━ = 3

               9

  •      24

━━━ = 6

     9

  •    3452

━━━━ =  5

     9

KEY HIGHLIGHTS : The range of D.S. always falls from 0 to 9.

When we add 9 to a number, its Digital Sum will not change therefore in order to calculate Digital Sum we need to cancel out  all the 9’s. 


9 + 1 → 10 → 1

9 + 2 → 11 → 2

9 + 3 → 12 → 3

9 + 4 → 13 → 4

9 + 5 → 14 → 5

9 + 6 → 15 → 6

9 + 7 → 16 → 7

9 + 8 → 17 → 8

9 + 9 → 18 → 9


Example : 12345 → 6 → Digital Sum

367215 → 6 → Digital Sum

                 49219 → 7 → Digital Sum  

                 59991 → 6 → Digital Sum

                 637218 → 9 → Digital Sum

63271894503 → 3 → Digital Sum


When the Digital Sum on the Digits turns out to be 0, consider it to be 9 (During Addition and Subtraction). But this does not follow for multiplication.


Decimal and percentage do not have any impact on Digital Sum of a number.

Example : 14 → 5 → Digital Sum

                 1.4 → 5 → Digital Sum

                 140 → 5 → Digital Sum

                 1400 → 5 → Digital Sum


Example  : 62% → 8 → Digital Sum 

                  6.2 % → 8 → Digital Sum

                  620 % → 8 → Digital Sum

Properties of Digital Sum 

  •  D.S. (a + b) = D.S. {D.S.(a) + D.S.(b)}

  • D.S. (a - b) = D.S. {D.S.(a) - D.S.(b)}

  • D.S. (a x b) = D.S. {D.S.(a) x D.S.(b)}

Example of  Property 1: D.S. (a + b) = D.S. {D.S.(a) + D.S.(b)}

  •                  786        +    152    =    938

                             ↓                  ↓              ↓

                       D.S. (21)  +   D.S.(8)  =   D.S. (11)

                             ↓                  ↓              ↓

                             3         +       8      =      2

                                11

                                  ↓

                                  2 → Digital Sum

                                  L.H.S.            =  R.H.S.

  •                46      =      34        +     12

                           ↓                 ↓                 ↓

                     D.S. (10)  =  D.S. (7 )  +   D.S. (3)

                           ↓                 ↓                 ↓

                            1                7        +       3    = 10

                                                                            ↓

                                                 Digital Sum ←  1     

               L.H.S.    =  R.H.S.            

  

Example of  Property 2: D.S. (a - b) = D.S. {D.S.(a) -  D.S.(b)}

  •                 962        -    151     =     811

                             ↓                  ↓              ↓

                        D.S. (8)   -   D.S.(7)  =   D.S. (10)

                             ↓                  ↓              ↓

                             8        -        7       =      1

                                  1 → Digital Sum

                                 L.H.S.              =  R.H.S.

  •                 729        -    591     =    138

                             ↓                  ↓              ↓

                        D.S. (9)   -   D.S.(6)  =   D.S. (3)

                             ↓                  ↓              ↓

                             9        -        6       =      3

                                  3 → Digital Sum

                                 L.H.S.              =  R.H.S.


Example of  Property 3: D.S. (a x b) = D.S. {D.S.(a) x  D.S.(b)}

  •                  35        x     16     =     560

                             ↓                  ↓              ↓

                        D.S. (8)   x   D.S.(7)  =   D.S. (11)

                             ↓                  ↓              ↓

                             8        x       7       =      2

                         56 → 11 

                                    ↓  

                                    2 → Digital Sum

                                 L.H.S.              =  R.H.S.

  •                  54        x      76     =    4104

                             ↓                  ↓              ↓

                        D.S. (9)   x   D.S.(13)  =   D.S. (9)

                             ↓                  ↓              ↓

                             9        x       4       =      9

                          36 → 9  

                                    ↓  

                                    9 → Digital Sum

                                 L.H.S.              =  R.H.S.


Comments

Popular posts from this blog

HCF and LCM

HCF and LCM FACTORS / DIVISORS = Numbers that divide any number completely, without leaving any Remainder are its factors. Example : Factors of 72 are 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72.                    Factors of 90 are 1, ,2, 3, 5 , 6, 9, 10, 15, 18, 30, 45, 90 MULTIPLES =   Numbers that fall in tables of any given number are its Multiples. Examples  : Multiples of 12 are 12, 24, 36, 48, 60, 72, 84, 96……                       Multiples of 5 are 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 ….. HIGHEST COMMON FACTOR (H.C.F.) /  GREATEST COMMON DIVISOR (G.C.D.) =   Largest number that divides two or more than two given numbers. Examples : Calculate the  H.C.F. of 45 and 27  Sol : Factors of 45 = 1, 3, 5, 9, 15, 45       ...

Number System (No. of Zeros)

  How to Find Number of Trailing     Zeros in a Factorial or Product Under the topic of Number of Zeros , it is expected to find out the number of trailing zeros at the end of the number. In simple words, it can be said that to calculate the No. of Zeros at the  right side of the number. To make the things more clear, let us take a simple example to understand the concept of Number of Zeros Example : 1234057000 → No. of Trailing zeros →  3                  1050500000 → No. of Trailing zeros → 5                  1.5 x 10⁵ → No. of Trailing zeros → 4 Such Zeros that are represented at the end of the numbers are actually the Trailing Zeros. Now the next thing arises about the formation of Zeros in the Numbers. So, the fundamental regarding the formation of a Zero is the presence of a Pair of ...