Skip to main content

Number System (Last Two Digit)

 

Last Two Digit of a Number raised to Power

Last Two Digit of the Number is basically a Tens Digit and Unit Digit of the number.To understand the things in detail, let us take an example .

Example : The last two digits of the number, 1453289  is 8 and 9 ; which is quite obvious.


To calculate the last two digit of a Number raised to power

Case 1: Number ending with 1.

Method : For the Numbers ending with 1, 

                                         abc1^(xyz)  

               Unit Digit = 1

               Tens Digit = c * z 

                                                                                                   (c * z)             1       

              The last two digits of the Number;  abc1^(xyz)  =      ━━━         ━━━

                                                                                                       ↓                  ↓

                                                                                                Tens Digit       Unit Digit

           

Example : Calculate the Last two Digits of 654921⁶⁷⁵⁴⁸ .

Sol :  Since the digit last with 21 .

         Unit Digit = 1

         For Calculating the Tens Digit = 2 x 8 = 16

         

         Hence, the Last two Digit =   6   1

                                                       ━  ━

Example : Calculate  the Last Two Digits of 61341⁸¹⁵

Sol :  Since the digit last with 41 .

         Unit Digit = 1

         For Calculating the Tens Digit = 4 x 5 = 20

         

         Hence, the Last two Digit =   0   1

                                                       ━  ━

Case 2: Number ending with 3, 7 or 9.

Method :  If the number ends with 3 → 3⁴ → Last Digit = 1

          If the number ends with 7 → 7⁴ → Last Digit = 1

          If the number ends with 9 → 9² → Last Digit = 1


Example : Calculate the last Digit of 69³².

Sol :  If the number ends with 9 → 9² → Last Digit  = 1 

         Square the base and Divide the exponent by 2.

         (69²)¹⁶ = Last to digits of 69² = 61 = (61)¹⁶ 

         Since the digit last with 61 .

         Unit Digit = 1

         For Calculating the Tens Digit = 6 x 6 = 36

         

         Hence, the Last two Digit =   6   1

                                                       ━  ━

Example : Calculate the last two digits of 37⁶⁴.

Sol : If the number ends with 7 → 7⁴ → Last Digit = 1

        Raise the base by 4 and Divide the exponent by 4.

        (37⁴)¹⁶ = Last two digits of 37⁴ = 61 = (61)¹⁶

        Since the digit last with 61 .

        Unit Digit = 1

        For Calculating the Tens Digit = 6 x 6 = 36

         

        Hence, the Last two Digit =   6   1

                                                      ━  ━

Case 3: Number ending with 2, 4 , 6 or 8

Method : The last two digits for the number ending with 2, 4, 6 or 8 is :

                    (2)¹⁰ →  1024

               Last two digits are 24.

              (24)^odd number → Last two digit = 24

              (24)^even number → Last two digit = 76

              76 x 2^any power  → Last two digit = 2^any power


Example : Calculate the last two digits of 2¹²⁸.

Sol : 2¹²⁸ = 2¹²⁰ x 2⁸ = (2¹⁰)¹² x 2⁸ 

                                = (1024)¹² x 2⁸                  [ (24)^even number → Last two digit = 76 ]

                                = 76 x 56

                                = 56

       Hence , the last two digits of 2¹²⁸ = 56


Example : Calculate the last two digits of 4⁴⁰ .

Sol : 4⁴⁰ = (2²)⁴⁰ = 2⁸⁰ 

              = (2¹⁰)⁸ 

              = (1024)⁸                                           [ (24)^even number → Last two digit = 76 ]

               = 76

     Hence, the last two digits of 4⁴⁰ = 76

Case 4: Number ending with 5 

Method :         

                          [ (1/3/5/7/9)    5  ]^ ODD  →  Last two digit = 75

                           ━━━━━   ━

                                   ↓            ↓

                          Tens Digit      Unit Digit


                           [ (2/4/6/8/0)    5  ]^ ODD  →  Last two digit = 25

                           ━━━━━    ━

                                   ↓             ↓

                           Tens Digit      Unit Digit


                            [Any Value    5  ]^ EVEN  →  Last two digit = 25

                            ━━━━━   ━

                                    ↓           ↓

                           Tens Digit     Unit Digit




Tens Digit 

Exponent

Last two digits

Odd 

Odd

75

Even

Odd

25

Odd

Even

25

Even

Even

25



Example : Find the last two digits of 185⁸⁸. 

Sol :                   [Any Value    5  ]^ EVEN  →  Last two digit = 25

                           ━━━━━   ━

                                    ↓           ↓

                           Tens Digit     Unit Digit

         85⁸⁸  = Last two Digit = 25.

Hence, the last two digits of 185⁸⁸ = 25


Ask me in the comment section, if you face any problem while solving questions of Number System. Visit next page for more concepts and problems.



         




       


Comments

Popular posts from this blog

Digital Sum Balance (D.S.)

A single digit is obtained by adding all the digits of a number is called Digital Sum Balance (D.S.)   Ex :  12 → 1 + 2 → 3 24 → 2 + 4 → 6 21 → 2 + 1  → 3 9876 → 9 + 8 + 7 + 6 → 30 → 3 + 0 → 3 3452 → 3 + 4 + 5 + 2 → 14 → 1 + 4 → 5 Or,  On Dividing the digits by 9, the obtained Remainder is Digital Sum Balance.  Ex :    12    ━━ = 3                9      24 ━━━ = 6      9    3452 ━━━━ =  5      9 KEY HIGHLIGHTS : The range of D.S. always falls from 0 to 9. When we add 9 to a number, its Digital Sum will not change therefore in order to calculate Digital Sum we need to cancel out  all the 9’s.  9 + 1 → 10 → 1 9 + 2 → 11 → 2 9 + 3 → 12 → 3 9 + 4 → 13 → 4 9 + 5 → 14 → 5 9 + 6 → 15 → 6 9 + 7 → 16 → 7 9 + 8 → 17 → 8 9 + 9 → 18 → 9 Example : 123 45 → 6 → Digital Sum ...

HCF and LCM

HCF and LCM FACTORS / DIVISORS = Numbers that divide any number completely, without leaving any Remainder are its factors. Example : Factors of 72 are 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72.                    Factors of 90 are 1, ,2, 3, 5 , 6, 9, 10, 15, 18, 30, 45, 90 MULTIPLES =   Numbers that fall in tables of any given number are its Multiples. Examples  : Multiples of 12 are 12, 24, 36, 48, 60, 72, 84, 96……                       Multiples of 5 are 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 ….. HIGHEST COMMON FACTOR (H.C.F.) /  GREATEST COMMON DIVISOR (G.C.D.) =   Largest number that divides two or more than two given numbers. Examples : Calculate the  H.C.F. of 45 and 27  Sol : Factors of 45 = 1, 3, 5, 9, 15, 45       ...

Number System (No. of Zeros)

  How to Find Number of Trailing     Zeros in a Factorial or Product Under the topic of Number of Zeros , it is expected to find out the number of trailing zeros at the end of the number. In simple words, it can be said that to calculate the No. of Zeros at the  right side of the number. To make the things more clear, let us take a simple example to understand the concept of Number of Zeros Example : 1234057000 → No. of Trailing zeros →  3                  1050500000 → No. of Trailing zeros → 5                  1.5 x 10⁵ → No. of Trailing zeros → 4 Such Zeros that are represented at the end of the numbers are actually the Trailing Zeros. Now the next thing arises about the formation of Zeros in the Numbers. So, the fundamental regarding the formation of a Zero is the presence of a Pair of ...